

August 8, 2006

Mr. Mark Verhey Certified Engineering Geologist Humboldt County Division of Environmental Health 100 H Street, Suite 100 Eureka, CA 95501

Re: Groundwater Monitoring Report - Second Quarter 2006

Seymour Residence 1111 Riverside Drive Rio Dell, CA LOP # 12032 Project # AE001H

Dear Mr. Verhey,

On behalf of Jean and Everett Seymour, Clearwater Group (Clearwater) has prepared this *Second Quarter 2006 Groundwater Monitoring Report*. It presents background information, monitoring activities and monitoring results, conclusions, recommendations, and the planned activities for the referenced property (see **Figure 1** for a vicinity map).

Background

The subject site was improved with one 550-gallon capacity gasoline underground storage tank (UST). The tank location is shown in **Figure 2**. The tank was operated until 1987 when permitting began for in-place closure of the UST. In February 1988, the tank was abandoned in-place in accordance with the requirements of the Humboldt County Division of Environmental Health (HCDEH). According to HCDEH files, one soil sample was collected from an unspecified location by Beacom Construction of Fortuna, CA under HCDEH supervision in the vicinity of the UST at that time. Soil analytical results indicated that a release of petroleum hydrocarbons had occurred.

In February 1989, three additional soil samples (B-1, B-2, B-3, Figure 2) were collected by Beacom Construction from the south end of the (closed in place) tank. The depth and specific

locations of each of the three borings is unknown. However, patches in the concrete drive suggest the locations of these three former boring locations. Laboratory analytical results indicate that two of the three soil samples (B-2 and B-3) contained detectable concentrations of gasoline-range hydrocarbons.

In June 1999, the HCDEH collected groundwater samples from two borings (B-1 and B-2, **Figure 2**) from the vicinity of the closed UST. Each boring was advanced using a hand auger to a depth of approximately 7 to 8 feet below ground surface (bgs). The HCDEH also collected one groundwater sample from an on-site irrigation well (no longer used). Of the three samples collected by the HCDEH, only the groundwater sample collected from boring B-1 contained detectable concentrations of petroleum hydrocarbons. In a letter dated May 30, 2000, the HCDEH requested that a hydrogeologic investigation be performed. Clearwater subsequently prepared and submitted a *Workplan for Subsurface Investigation* dated July 19, 2000 to the HCDEH.

On December 8, 2000, Clearwater advanced five soil borings (B-3 through B-7) near the abandoned UST to define the extent of petroleum hydrocarbon contamination at the subject property. The borings were advanced by hand Geoprobe™ equipment to depths ranging from 8 to 10 feet bgs. The soil borings were located north, northwest, west, and south of the former UST (**Figure 2**). Data collected during this investigation are presented in Clearwater's *Subsurface Investigation Report* dated March 23, 2001.

In a letter dated May 15, 2001, the HCDEH requested a two-phase Corrective Action Plan be prepared to implement Clearwater recommendations contained in an *Initial Subsurface Investigation Report*, dated January 25, 2001, which included installation of groundwater monitoring wells and possible excavation and removal of the abandoned UST. Clearwater subsequently prepared and submitted a *Corrective Action Phase 1 Subsurface Investigation and Remediation Workplan*, dated June 14, 2001 per HCDEH's request.

On March 7, 2002, Clearwater supervised the installation of four monitoring wells (MW-1, MW-2, MW-3 and MW-4, **Figure 2**) and initiated a quarterly groundwater monitoring program. Results of monitoring well installation and the first quarterly groundwater monitoring were presented in Clearwater's *Monitoring Well Installation and First Quarter 2002 Groundwater*

Monitoring Report dated April 3, 2002. Well construction data of these wells is presented in **Table 1**. Quarterly sampling has occurred from that event to the present day.

In June 2004, Clearwater Group produced a *Remediation Workplan Addendum* recommending the application of a bioremediation system to reduce the dissolved phase hydrocarbon contamination around MW-1. The proposed method was an In-situ Oxygen Curtain (iSOC) system.

The workplan was accepted by the HCDEH and in August 2004, Clearwater Group conducted a baseline microbiological study at the property. Various biological and geo-chemical parameters were tested and analyzed. The results indicated that the core of the hydrocarbon plume or "hot spot" had become anaerobic over time, either from slow biodegradation of petroleum hydrocarbons or the biodegradation of other organic material, which are present in the aquifer. Microbial analyses indicated that hydrocarbon-degrading microbes were present in both MW-1 and MW-2. Chemical concentrations of the petroleum hydrocarbons were within the range for effective enhanced bioremediation. One iSOC unit was recommended to be installed in MW-1.

The HCDEH concurred with the Clearwater findings and approved the iSOC installation for MW-1. On October 6, 2004 one iSOC unit was installed in MW-1. The iSOC system was monitored at two, four and eight-week (post installation) intervals and since then continuously on a monthly basis.

On March 1, 2005, Clearwater received a letter from the HCDEH requesting further investigations to delineate and monitor possible down-gradient contamination. Clearwater responded to that letter recommending assessing performance of the iSOC system (i.e. wait to see the results of the third quarter groundwater monitoring event) prior to changing course and conducting further investigations. The HCDEH concurred with these comments and recommendations.

In April 2005, Clearwater conducted a semi-annual geo-chemical study to monitor and evaluate the performance of the iSOC system. The study concluded that the iSOC system was operating correctly and that aerobic bioremediation was occurring at the site. The report was submitted to the HCDEH on June 16, 2005.

Groundwater Monitoring Activities

The second quarter 2006 groundwater monitoring event was conducted on June 6, 2006. Monitoring wells MW-1 through MW-4 were gauged, purged, and subsequently sampled. Clearwater used an electronic water level indicator, accurate to within ± 0.01 foot, to gauge depth to water. The wells were checked for the presence of separate-phase hydrocarbons (SPH) prior to purging. No measurable thickness of SPH was observed in any of the wells.

In preparation for sampling, the wells were purged of groundwater until water quality parameters (temperature, pH, and conductivity) stabilized. Purging devices were cleaned between use by an Alconox® wash followed by double rinse in clean potable water to prevent cross-contamination. Rinseate and purge water was transported on the sampling vehicle with an interior tank and pumped into labeled drums at the Clearwater yard. All purge water was disposed of under manifest at Instrat of Rio Vista, CA. Following recovery of water levels to at least 80% of their static levels, Clearwater collected groundwater samples from the wells using disposable polyethylene bailers and poured from the bailers into HCl preserved laboratory-supplied VOA's. Sample containers were labeled, documented on a chain-of-custody form, and placed on ice in a cooler for transport to the project laboratory. Groundwater samples collected from MW-1 were analyzed for concentrations of total petroleum hydrocarbons as gasoline (TPH-g), benzene, toluene, ethylbenzene and xylenes (BTEX), methyl tertiary butyl ether (MTBE), di-isopropyl ether (DIPE), tertiary amyl methyl ether (TAME), ethyl tertiary butyl ether (ETBE) and tertiary butyl alcohol (TBA) using U.S. Environmental Protection Agency (EPA) Method 8260B. Groundwater samples collected from MW-2 through MW-4 were analyzed for concentrations of TPH-g and BTEX by EPA Method 8260B. Laboratory work was conducted by Kiff Analytical, a Department of Health Services (DHS)-certified laboratory, located in Davis, California. The monitoring activities during this quarter are summarized below:

Wells gauged: MW-1, MW-2, MW-3 and MW-4

Wells sampled: MW-1, MW-2, MW-3, and MW-4

Field Analysis: DO, ORP, Total and Ferrous Irons (MW-1 through MW-4)

Laboratory analyses: TPH-g, BTEX, MTBE, DIPE, TAME, ETBE, TBA (for MW-1 by

EPA Method 8260B); TPH-g and BTEX (for MW-2, MW-3, and

MW-4 by EPA Method 8260B)

Field activities described above were conducted in accordance with Clearwater's Groundwater Monitoring and Sampling Field Procedures (**attached**). Groundwater gauging and well purging information are presented on Gauging/Purging Calculations and Data sheets (**attached**). The analytical lab report is attached as Kiff Report No. 50968.

Groundwater Monitoring Results

Results of the second quarter 2006 monitoring are summarized below:

Depth to water: Ranged from 1.83 (114.59 ft above mean sea level (msl) [MW-1]

to 2.53 (113.12 ft above msl) [MW-2] feet below top of well

casing (also shown in **Table 2**)

Flow direction/gradient: Northwesterly direction with a horizontal hydraulic gradient of

0.02 ft/ft (**Figure 3**)

Floating product: None

TPH-g concentration: MW-1 through MW-4, $<50 \mu g/L$ Benzene concentration: MW-1 through MW-4, $<0.50 \mu g/L$

MTBE Concentration: <0.50 μg/L (MW-1)

Based on historical data, the area near the abandoned in place former UST (or monitoring well MW-1) has been recognized as the "hot spot" on site. Sampled TPH-g concentrations from MW-1 during the first through third quarterly monitoring events in 2004 were in the range of 2,900 μ g/L (lowest) to 18,000 μ g/L (highest). Benzene concentrations ranged from 240 μ g/L to 880 μ g/L within the same period. Historically the maximum MTBE concentration was 0.85 μ g/L, which was sampled from the third quarter 2004. However, none of the wells (MW-1 through MW-4) reported hydrocarbon or MTBE concentrations that were above detection limits in the fourth quarter 2004 or first quarter 2005. In the second quarter 2005, there was a slight rebound in contaminant concentrations in MW-1 (81 μ g/L TPH-g). In the third quarter 2005, contaminant concentrations returned to non-detect levels for all analytes except xylenes in MW-1, which was reported at 0.52 μ g/L. In the fourth quarter 2005, all contaminant concentrations returned to or remained at non-detect levels. Non-detect contaminant concentrations have continued up to this second quarter 2006 sampling event. The cumulative groundwater elevations and analytical data

for the current and previous quarters are listed in **Table 2**. The status of enhanced bioremediation is reflected in the indirect geo-chemical indicators listed in **Tables 3 and 4**.

iSOC System Operation and Maintenance

iSOC operation and maintenance (O&M) is conducted on a monthly basis. The O&M event includes the following activities:

- Gauge all monitoring wells (MW-1 through MW-4);
- Conduct field sampling on MW-1 and MW-2 for pH, temperature, conductivity, DO, ORP, total Fe, Fe²⁺;
- Record oxygen usage and check for leaks;
- Inspect iSOC unit in MW-1 to ensure it is functioning correctly.

The results of the monthly O&M are included in Table 3.

Conclusions

Hydrocarbon concentrations were below detectable limits in groundwater samples obtained
from all monitoring wells (MW-1 through MW-4). As of this monitoring event, non-detect
concentrations of TPH-g, benzene and MTBE have been reported for four consecutive
quarters in all monitoring wells. The only contaminant to report above detection limits in this
period was xylenes in the third quarter 2005 in MW-1; A concentration of 0.52 ug/L was
reported.

Recommendations

- The quarterly monitoring events have now (as of this second quarter 2006) effectively reported non-detect contaminant concentrations for four consecutive quarters. Clearwater recommends that the iSOC system be shutdown at the end of August 2006 when the next iSOC O&M visit is scheduled.
- After the system is shutdown, Clearwater recommends that four quarters of post-iSOC treatment groundwater monitoring be performed to verify that no rebound occurs and the site is remediated. Based on the proposed schedule groundwater monitoring would cease after the second quarter 2007 monitoring event.

Certification

This report was prepared under the supervision of a Professional Geologist in the state of California at Clearwater Group. All statements, conclusions and recommendations are based solely upon published results from previous consultants, field observations by Clearwater Group and laboratory analysis performed by a California DHS-certified laboratory related to the work performed by Clearwater Group. Clearwater Group is not responsible for laboratory errors. The information and interpretation contained in this document should not be relied upon by a third party. The service provided by Clearwater Group has been conducted in a manner consistent with the level of care and skill ordinarily exercised by members of our profession currently practicing under similar conditions in the area of the site. No other warranty, expressed or implied, is made.

ames A. Jacobs P.G. # 42

Chief Hydrogeologist

Sincerely,

Clearwater Group

Matthew Ryder-Smith

Project Manager

CC: Jean and Everett Seymour

1111 Riverside Drive

Rio Dell, CA 95562

Ms. Kasey Ashley

North Coast Regional Water Quality Control Board

5550 Skylane Boulevard, Suite A

Santa Rosa, CA 95403

ACOBS

Attachments

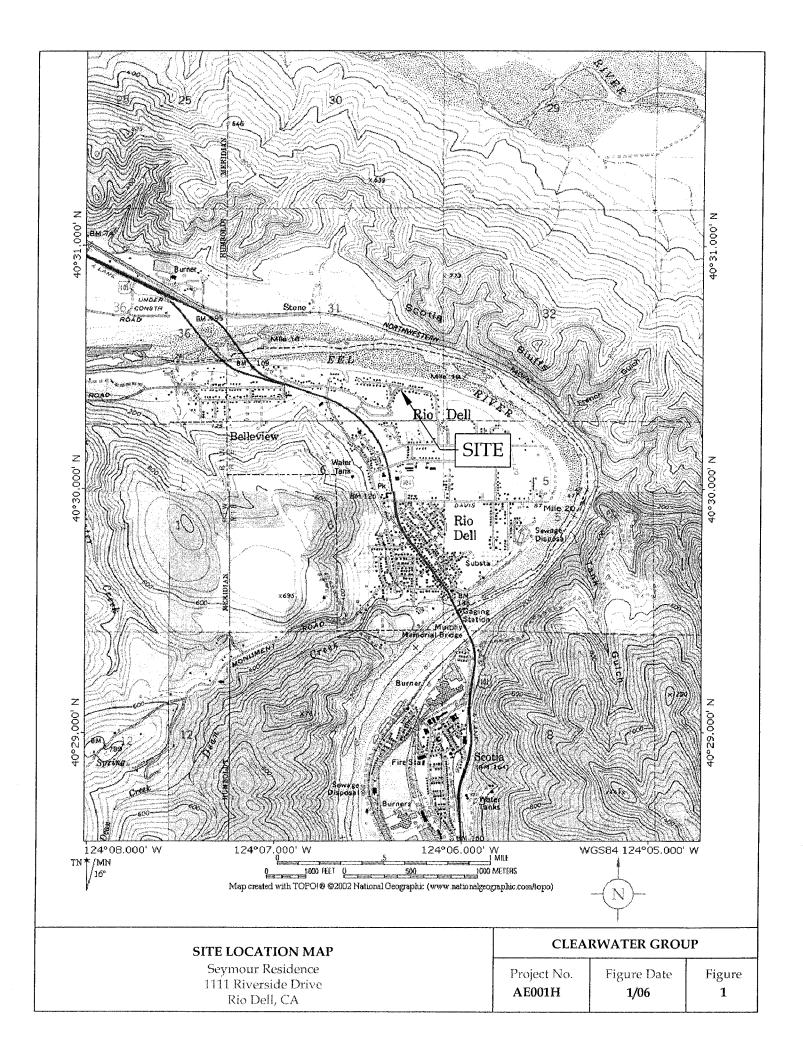
Figure 1: Site Vicinity

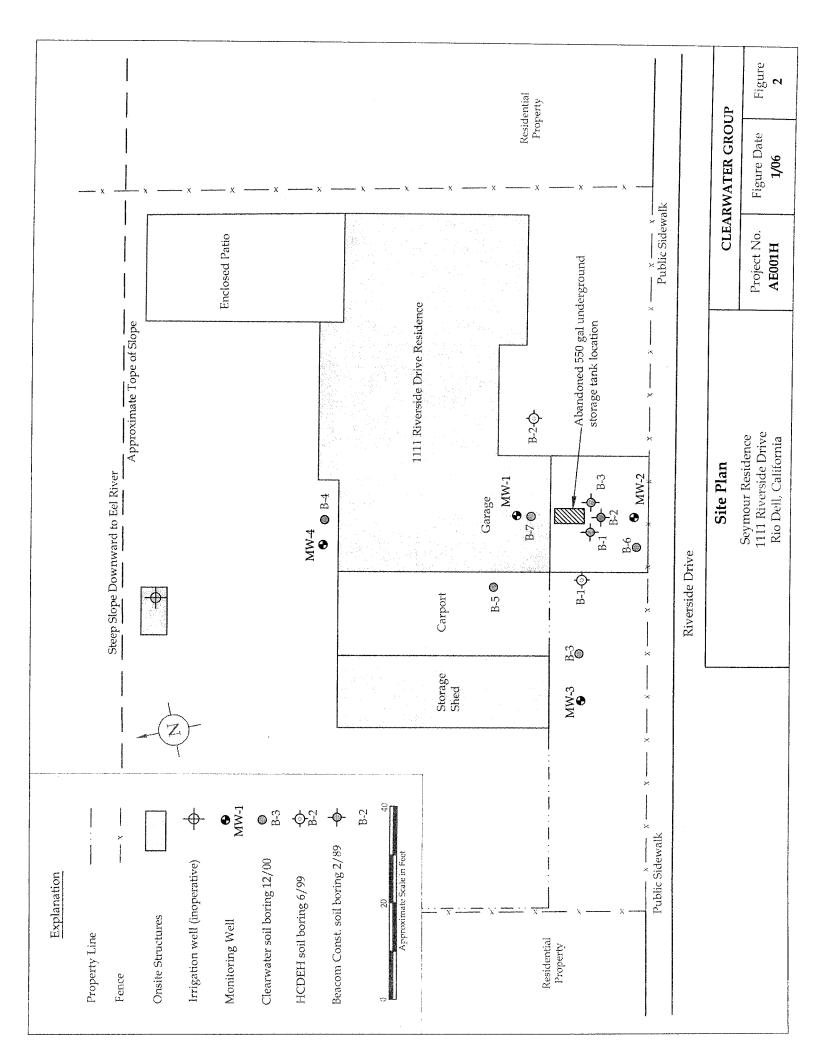
Figure 2: Site Plan

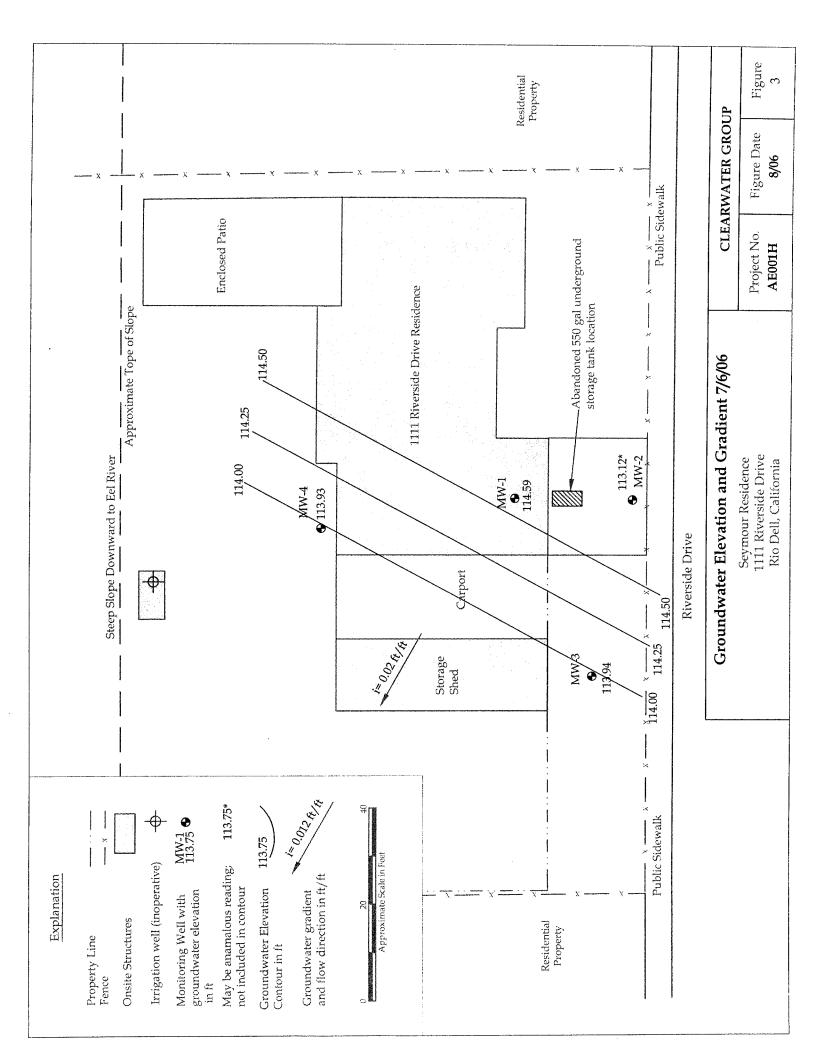
Figure 3: Groundwater Elevations and Gradient - 7/6/06

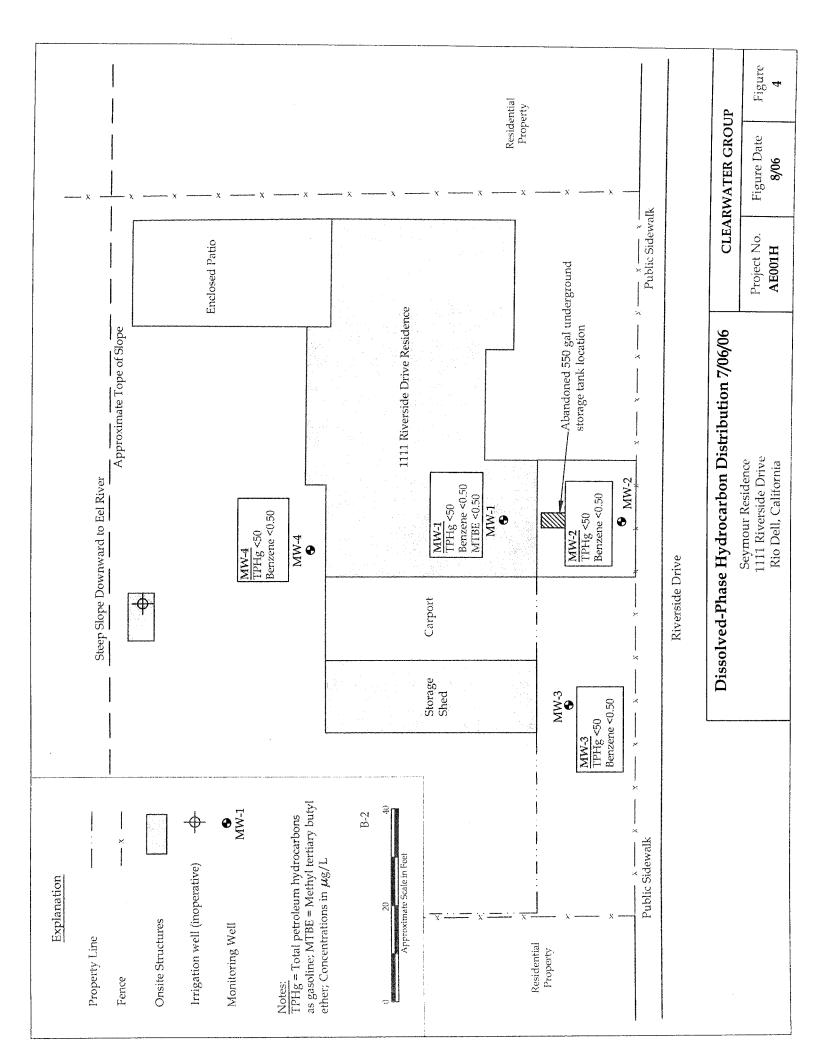
Figure 4: Dissolved-Phase Hydrocarbon Distribution - 7/6/06

Table 1: Well Construction Data


Table 2: Groundwater Elevations and Analytical Data


Table 3: iSOC Field Sampling Parameters


Table 4: Indirect Geochemical Indicators


Clearwater Groundwater Monitoring and Sampling Protocols Clearwater Well Gauging Data/Purge Calculations and Well Purging Data Laboratory Report and Chain-of-Custody Form

FIGURES

TABLES

Table 1
WELL CONSTRUCTION DATA
Seymour Residence
1111 Riverside Drive
Rio Dell, California
Project # AE001C

_		
Cement		(feet)
Bentonite	Seal	(feet)
Filter	Pack	(feet)
Slot	Size	(inches)
Screened	Interval	(feet)
Blank	Interval	(feet)
Total	Depth	(feet)
Casing	Diameter Depth	(inches)
Intstalled	by	
Date	Intstalled	
Well	Identification	

			(inches)	(feet)	(feet)	(feet)	(inches) (feet)	(feet)	(feet)	(feet)
MW-1	3/7/2002	3/7/2002 Clearwater	2	12.5	0-3	3-12.5	0.02	2-12.5	1-2	0-1
0 2223		-							+	7
MW-2	3/7/2002	3/7/2002 Clearwater	7	15	0-3	3-15	0.05	2-15	1-2	0-1
O TAKE .	0000, 11, 0							,	1. 40	1-0
MW-3	3/7/2002	Clearwater	7	15	0-3	3-15	0.05	2-15	1.7	0_1
		, ;						,	1	1-0
MW-4	3/7/2002	3/7/2002 Clearwater	7	13	0-3	3-13	000	2_13	1.0	-
					,	;	1	7_1	7.	

Table 2
Groundwater Elevations and Analytical Data
Seymour Residence
1111 Riverside Drive
Rio Dell, CA
Project # AE001C

Lead	(ug/L)	\$	1	:	1	1	;			;			;	-	;	1	:	1	-	♦		1	-		:		:		1		1	!	!	1	;			
Ethanoi	(ug/L)	\$	Ą	<25	♦	<0.5	1	1	;	1	:	1	;	1	1	1	:	:	:	26	♦	\$	\$	Ą	1		:	-	1	1		1			1		:	
Methanoi	(µg/L)	<50	<50	<250	65	<0.5	1				:	1		;	:				1	<50	<50	\$50	<50	<50	-	;	;			1		;		1	1		1	
TAME	(µg/L)	<0.5	<0.5	<2.5	<0.5	<0.5	;	<10	<0.5	▽	<5.0	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.5	<0.5	<0.5	<0.5	<0.5	:		!	1	:		:	1	:	1	1		1	
ETBE	(µg/L)	<0.5	<0.5	<2.5	<0.5	<0.5		<10	<0.5	⊽	<5.0	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.5	<0.5	<0.5	<0.5	<0.5	;		,	1				;	1	;	:		1	
DIPE	(µg/L)	<0.5	<0.5	<2.5	<0.5	<0.5		<10	<0.5	⊽	<5.0	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.5	<0.5	<0.5	<0.5	<0.5	1	ı	1	1	1	1	1	;	;	:		:	1	
TBA	(µg/L)	7.7	28	39	<5	<0.5		<100	5.5	<10	<5.0	<0.5	<0.50	<5.0	<5.0	<5.0	<5.0	<5.0	<5.0	S>	\$	\$>	\$>	<5		1	1	1	-	ł	1	:		;	;	1	1	
MTBE	(µg/L)	<0.5	<0.5	<2.5	<0.5	<0.5	;	<10	<0.5	▽	<5.0	0.85	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.5	<0.5	<0.5	<0.5	<0.5		:				+		+		1	1	;	1	
Xylenes	$(\mu g/L)$	37	150	440	<0.5	21	710	3,700	45	380	2,400	140	<0.50	<0.50	5.60	0.52	<0.50	<0.50	<0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Ethylbenzene	(μg/L)	16	130	400	<0.5	11	400	1,200	25	110	610	250	<0.50	<0.50	1.6	<0.50	<0.50	<0.50	<0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Toluene	(µg/L)	6.8	29	77	<0.5	5.3	180	1,100	8.6	73	099	11	<0.50	<0.50	1.4	<0.50	<0.50	<0.50	<0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
Benzene	(µg/L)	35	440	099	<0.5	21	550	1,800	190	240	880	290	<0.50	<0.50	3.7	<0.50	<0.50	<0.50	<0.50	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	
TPHg	(µg/L)	380	3,700	6,900	<50	300	8,200	28,000	1,400	2,900	18,000	4,200	<50	<50	81	<50	<50	<50	≪90	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	\$0 \$	
GWE	(feet)	114.27	110.85	109.64	115.73	114.89	111.26	108.55	113.10	112.60	110.95	106.50	114.68	113.67	110.58	110.91	114.74	114.68	114.59	106.30	110.36	109.02	110.04	110.10	109.57	108.50	109.56	110.34	109.54	108.18	114.47	112.33	111.03	110.13	113.01	112.97	113.12	
DTW	(feet)	2.15	5.57	6.78	69.0	1.53	5.16	7.87	3.32	3.82	5.47	9.92	1.74	2.75	5.84	5.51	1.68	1.74	1.83	9.35	5.29	6.63	5.61	5.55	6.08	7.15	6.09	5.31	6.11	7.47	1.18	3.32	4.62	5.52	2.64	2.68	2.53	
TOC	(feet)	116.42	116.42	116.42	116.42	116.42	116.42	116.42	116.42	116.42	116.42	116.42	116.42	116.42	116.42	116.42	116.42	116.42	116.42	115.65	115.65	115.65	115.65	115.65	115.65	115.65	115.65	115.65	115.65	115.65	115.65	115.65	115.65	115.65	115.65	115.65	115.65	
Sampling	Date	3/13/2002	6/18/2002	9/19/2002	12/31/2002	3/26/2003	6/23/2003	9/29/2003	12/23/2003	3/18/2004	6/22/2004	10/5/2004	1/4/2005	4/18/2005	8/4/2005	10/6/2005	1/4/2006	4/4/2006	7/6/2006	3/13/2002	6/18/2002	9/19/2002	12/31/2002	3/26/2003	6/23/2003	9/29/2003	12/23/2003	3/18/2004	6/22/2004	10/5/2004	1/4/2005	4/18/2005	8/4/2005	10/6/2005	1/4/2006	4/4/2006	2/6/2006	
Well	No.	<u></u>														•	1	•	•	1W-2							1											٦

Table 2
Groundwater Elevations and Analytical Data
Seymour Residence
1111 Riverside Drive
Rio Dell, CA
Project # AE001C

	<u>_</u>	T	Γ	Τ		Τ	T	Τ	Τ	Τ	Τ	Τ	Π	Τ	Τ	Τ	Τ	Τ	Τ	Τ	Γ	Τ	Τ	<u> </u>	Τ	Τ	Τ	Τ	Τ	Τ	Ţ	Τ	Τ	Τ	Τ	Τ	Τ	Τ
Lead	(µg/L)	\$ \$: :				;		1				:		Ş	;	!			1						ľ		:	!	;	!	1
Ethanol	(µg/L)	\$	\$	\$	\$, \) 1	1	1		;	;				;	,	:	,		\$	♦	♦	\$	\$;	;		;						;	,	!	1
Methanol	(µg/L)	<50	<50	<50	<50	<50	-			;	1	,			:	1		;	1		<50	\$0	\$50	<50	0\$>	1	1		:				:			1		1
TAME	(µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	1		:			;	1	;	1	;					<0.5	<0.5	<0.5	<0.5	<0.5	:	-	1				:			:	:	1	1
ETBE	(µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5			:	1	;		1	1					ı		<0.5	<0.5	<0.5	<0.5	<0.5	;	1	:	1			,			1	:	ı	-
DIPE	(µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5			;	:	;	1	,		,	,	1				<0.5	<0.5	<0.5	<0.5	<0.5	ì	-	;	;						1	:	1	:
TBA	(µg/L)	<5	\$	♦	Ş	♦	:	1	1		;	1	;	1		1	!	1	ì		<\$	♦	Ş	\$	♦	1	!	:	:	1		1	1	;	1		1	!
MTBE	(µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	:	1	:	1	1	:		-	-	:	-	-			<0.5	<0.5	<0.5	<0.5	<0.5	F	;	1	i	:		1		:		1	1	1
Xylenes	(µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5		<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Ethylbenzene	(μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	_	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Toluene	(μg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	S CONDUCTED	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
Benzene	(µg/L)	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50		<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	ANALYSE	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50	<0.50
TPHg	(μg/L)	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<50	<20	<50	<50	₹9		\$20 \$20	<50	<50	<50	<50	<50	<50	<50	<50	<50	DRY - NO	<50	<50	<50	<50	<50	<50	<50 <
GWE	(feet)	114.11	110.81	110.14	115.62	115.37	111.18	107.61	113.30	112.25	110.79	105.31	113.86	114.06	110.54	109.15	115.27	113.86	113.94		114.34	109.44	106.28	115.53	114.48	109.72	106.00	112.43	112.22	109.20		114.02	113.07	109.33	108.72	113.80	113.77	113.93
DTW	(feet)	1.51	4.81	5.48	0.00	0.25	4.44	8.01	2.32	3.37	4.83	10.31	1.76	1.56	5.08	6.47	0.35	1.76	1.68		2.41	7.31	10.47	1.22	2.27	7.03	10.75		4.53		12.82	2.73			T	2.95	2.98	2.82
TOC	(feet)	115.62	115.62	115.62	115.62	115.62	115.62	115.62	115.62	115.62	115.62	115.62	115.62	115.62	115.62	115.62	115.62	115.62	115.62		116.75	116.75	116.75	116.75	116.75	116.75	116.75	116.75	116.75	116.75	116.75	116.75	116.75	116.75	116.75	116.75	116.75	116.75
Sampling		-4	6/18/2002	9/19/2002	12/31/2002	3/26/2003	6/23/2003	9/29/2003	12/23/2003	3/18/2004	\dashv		-		\dashv				2//6/2006	000000000000000000000000000000000000000	+	-	_			-+	_	ᆔ	-	_			_	\dashv	_	-+	-+	1/6/2006
Well	No.	MW-3																		,	4-WM																	

Table 2

Groundwater Elevations and Analytical Data Seymour Residence

1111 Riverside Drive Project # AE001C Rio Dell, CA

Sampling	TOC	DTW GWE		TPHg	Benzene	Toluene	Ethylbenzene Xylenes	Xylenes	MTBE	TBA	DIPE	ETBE	TAME	TBA DIPE ETBE TAME Methanol	Ethanol
Date	(feet)	(feet)	(feet)	(μg/L)	(µg/L)	(µg/L)	(µg/L)	(mg/L)	(µg/L)	(µg/L)	(ug/L) (ug/L) (ug/L)		(mg/L)	(II9/I.)	(IIo/L)
•														(1.0.1)	(1.6.1.)
			MCL	!	1	150	700	1.750	13						
	Tas	ste & odor 1	threshold	5	1	42	29	17							
	NCRW	QCB Cleanup Go	up Goals	<50	0.50	42	29	17	5						

(µg/L) Lead

Well No.

TPHg: Total Petroleum Hydrocarbons as Gasoline by EPA Method 8260B TOC: Top of casing referenced to benchmark NGS (# AC 9251) Aluminum Cap HPGN D CA 01 PA (State HWY 211)

DTW: Depth to water as referenced to benchmark.

GWE: Ground water elevation (msl) as referenced to benchmark

 $\mu g/L$ = micrograms per liter=parts per billion = ppb

MCL: Maximum contaminant level, an enforceable drinking water standard "-": Not analyzed, available, or applicable

AL: Action level, a nonenforceable drinking water standard

NCRWQCB = North Coast Regional Water Quality Control Board (Region 1) Taste & odor threshold: A drinking water standard

TAME: Tertiary Amyl Methyl Ether by EPA Method 8260B ETBE: Ethyl Tertiary Butyl Ether by EPA Method 8260B

MTBE: Methyl Tertiary Butyl Ether by EPA Method 8260B

BTEX by EPA Method 8260B

TBA: Tertiary Butyl Alcohol by EPA Method 8260B DIPE: Di-Isopropyl Ether by EPA Method 8260B

Methanol by EPA Method 8260B

Ethanol: By EPA Method 8260B

Table 3
iSOC Field Sampling Parameters
Seymour Residence
111 Riverside Drive, Rio Dell, CA

Well	Sampling	TOC	MLQ	GWE	Hd	TEMP	COND.	DO	ORP	Total Fe	Fe ²⁺
I. D.	Date	(feet)	(feet)	(feet)		(°F)	(mS/cm)	mg/L	mV	mg/L	mg/L
MW-1	10/5/2004 (pre install)	116.42	9.92	106.50	6.27	9.99	619	3.6	47	8.8	4.6
MW-1	10/25/2004 (2-week)	116.42	2.98	113.44	6.47	62.9	273	39.7	54	1.1	0.0
MW-1	11/2/2004 (4-week)	116.42	3.91	112.51	6.26	70.1	290	38.1	50	0.4	0.0
MW-1	12/03/2004 (8-weeks)	116.42	3.62	112.80	6.28	49.3	257	27.7	46	2.4	0.0
MW-1	1/4/2005 (4th Quarter)	116.42	1.74	114.68	6.47	57.7	255	30.6	47	2.8	0.0
MW-1	2/2/2005 (O&M event)	116.42	2.48	113.94	7.51	52.7	352	41.5	55	1.2	0.0
MW-1	4/18/2005 (1st quarter)	116.42	2.75	113.67	5.70	57.8	249	24.9	58	2.2	0.4
MW-1	5/31/05 (O&M event)	116.42	3.78	112.64	6.75	72.1	395	34.9	-10	1.0	0.0
MW-1	7/5/2005 (O&M event)	116.42	4.56	111.86	7.11	65.6	222	51.4	23	1.2	0.0
MW-1	8/4/2005 (2nd quarter)	116.42	5.84	110.58	7.16	69.5	214	NS	NS	NS	NS
MW-1	9/9/2005 (O&M event)	116.42	7.01	109.41	6.87	62.9	346	13.0	27	8.0	0.0
MW-1	10/6/2005 (3rd quarter)	116.42	5.51	110.91	6.87	63.3	199	18.2	113	0.4	0.0
MW-1	12/7/2005 (O&M event)	116.42	2.23	114.19	6.47	61.6	253	7.2	37	0.0	0.0
MW-1	1/4/2006 (4th quarter)	116.42	89.1	114.74	6.84	60.5	203	18.5	38	0.4	0.0
MW-1	1/30/2006 (O&M event)	116.42	1.33	115.09	6.28	58.6	186	275.3*	62	0.2	0.0
MW-1	3/13/2006 (O&M event)	116.42	2.12	114.30	6.35	58.4	185	33.8	173	0.4	0.3
MW-1	4/4/2006 (1st quarter)	116.42	1.74	114.68	6.87	55.4	201	23.7	363	0.3	0.1
MW-1	5/3/2006 (O&M event)	116.42	1.89	114.53	7.95	63.93	311	4.04	196.5	0.4	0.0
MW-1	6/6/2006 (O&M event)	116.42	2.23	114.19	7.97	57.38	304	40.4	188.5	0.3	0.0
MW-1	7/6/2006 (2nd quarter)	116.42	1.83	114.59	7.08	62.8	569	SN	54	0.1	0.0

iSOC Field Sampling Parameters Seymour Residence 111 Riverside Drive, Rio Dell, CA

Top of casing elevation referenced to project datum Notes:
TOC
DTW
GWE
DO
ORP
Total Fe
*

Depth to water below TOC

Groundwater elevation (TOC-DTW)

dissolved oxygen - milligrams per liter (mg/L) oxidation-reduction potential - millivolts (mV) total iron - milligrams per liter (mg/L)

ferrous iron - milligrams per liter (mg/L)
DO unit is percent (%)
Not Sampled

TABLE 4 - INDIRECT GEOCHEMICAL INDICATORS

Site - Jean and Everett Seymour Property 1111 Riverside Dr. Rio Dell, California

WELL	DATE	Total Iron	Ferrous	Ferric Iron	Fe+2/Fe total	Dissolved Oxygen	Oxidation	Hd	TPH-gasoline	Benzene
		(mg/l); Field Test	Iron Fe ⁺² (mg/l);	Fe ⁺³ (mg/l) by subtraction	Ratio	(mg/l); Field Test	Reduction Potential (ORP)	Field Test	(l/gu)	(l/gn)
			Field Test				(mV); Field Test			
MW-1	10/6/2004	8.8	4.6	4.4	52%	3.6	47	6.27	4.200	290
	1/5/2005	2.8	0.0	2.8	%0	30.6	47	6.47	<50	<0.5
	4/18/2005	2.2	0.4	1.8	18%	24.9	58	5.7	<50	<0.5
	8/4/2005	NA	NA	NA	NA	NA	AN	NA	81	3.7
	10/6/2005	0.4	0.0	0.4	%0	18.2	113	6.87	<50	<0.5
	1/4/2006	0.4	0.0	0.4	%0	18.49	38	6.84	<50	<0.5
	4/4/2006	0.3	0.1	0.3	22%	23.7	363	6.87	<50	<0.5
	7/6/2006	0.1	0.0	0.1	%0	SN	54	7.08	<50	<0.5
2										
MW-2	10/6/2004	1.0	0.0	1.0	%0	5	17	6.07	<50	<0.5
	1/5/2005	0.4	0.0	0.4	%0	5.5	39	6.49	<50	<0.5
	4/18/2005	0.2	0.0	0.2	%0	2.5	45	6.24	<50	<0.5
	8/4/2005	ΝΑ	NA	NA	NA	NA	NA	NA	<50	<0.5
	10/6/2005	0.0	0.0	0.0	-	7.5	112	6.30	<50	<0.5
	1/4/2006	0.0.	0.0	0.0	-	4.74	24	6.82	<50	<0.5
	4/4/2006	0.2	0.0	0.2	14%	4.63	234	6.83	<50	<0.5
	1/6/2006	0.1	0.0	0.1	%0	NS	57	6.91	0\$>	<0.5
MW-3	10/6/2004	3.0	0.0	3.0	%0	3.6	9-	6.28	<50	<0.5
	1/5/2005	9.9	0.0	9.9	%0	4.9	55	6.17	<50	<0.5
	4/18/2005	2.0	0.0	2.0	%0	1.8	09	6.01	<50	<0.5
	8/4/2005	NA	NA	NA	NA	NA	NA	NA	<50	<0.5
	10/6/2005	0.0	0.0	0.0	•	6.4	88	6.24	<50	<0.5
	1/4/2006	0.4	0.0	0.4	%0	4.46	26	6.88	<\$0	<0.5
	4/4/2006	0.2	0.0	0.2	%0	0.37	261	98.9	<\$0	<0.5
	7/6/2006	0.2	0.0	0.2	%9	NS	55	7.58	O\$>	<0.5
74117	1000,000	0,								
h-wiw	10/0/2004	3.0	0.0	3.0	%0	3.6	9-	6.28	<50	<0.5
	1/5/2005	4.1	0:0	1.4	%0	9.9	40	6.39	<50	<0.5
	4/18/2005	1.4	0.4	1.0	29%	8.9	62	5.39	<\$0	<0.5
	8/4/2005	AN	NA	NA	NA	NA	NA	NA	<\$0	<0.5
	10/6/2005	0.1	0.0	1.0	%0	6.1	78	5.84	<50	<0.5
	1/4/2006	0.4	0.0	0.4	%0	5.78	26	6.95	<50	<0.5
	4/4/2006	0.5	0.2	0.4	30%	0.24	254	6.97	<50	<0.5
	4/4/2006	0.5	0.2	0.4	30%	0.24	254	6.97	- 0\$	<0.5

NOTES:
mg/L: miligrams per liter.
ND: Not detected above the laboratory reporting limit (see laboratory reports for reporting limits).
NA: Not analyzed
calc: Calculation performed in the laboratory

CLEARWATER GROUNDWATER MONITORING AND SAMPLING PROTOCOLS

CLEARWATER GROUP

Groundwater Monitoring and Sampling Field Procedures

Groundwater Monitoring

Prior to beginning, a decontamination area is established. Decontamination procedures consist of scrubbing downhole equipment in an Alconox® solution wash (wash solution is pumped through any purging pumps used), and rinsing in a first rinse of potable water and a second rinse of potable water or deionized water if the latter is required. Any non-dedicated down hole equipment is decontaminated prior to use.

Prior to purging and sampling a well, the static water level is measured to the nearest 0.01 feet with an electronic water sounder. Depth to bottom is typically measured once per year, at the request of the project manager, and during Clearwater's first visit to a site. If historical analytical data are not available, with which to establish a reliable order of increasing well contamination, the water sounder and tape will be decontaminated between each well. If floating separate-phase hydrocarbons (SPH) are suspected or observed, SPH is collected using a clear, open-ended product bailer, and the thickness is measured to the nearest 0.01 feet in the bailer. SPH may alternatively be measured with an electronic interface probe. Any monitoring well containing a measurable thickness of SPH before or during purging is not additionally purged and no sample is collected from that well. Wells containing a hydrocarbon sheen are sampled unless otherwise specified by the project manager. Field observations such as well integrity as well as water level measurements and floating product thicknesses are noted on the Gauging Data/Purge Calculations form.

Well Purging

Each monitoring well to be sampled is purged using either a PVC bailer or a submersible pump. Physical parameters (pH, temperature and conductivity) of the purge water are monitored during purging activities to assess if the water sample collected is representative of the aquifer. If required, parameters such as dissolved oxygen, turbidity, salinity etc. are also measured. Samples are considered representative if parameter stability is achieved. Stability is defined as a change of less than 0.25 pH units, less than 10% change in conductivity in micro mhos, and less than 1.0 degree centigrade (1.8 degrees Fahrenheit) change in temperature. Parameters are measured in a discreet sample decanted from the bailer separately from the rest of the purge water. Parameters are measured at least four times during purging; initially, and at volume intervals of one well volume. Purging continues until three well casing volumes have been removed or until the well completely dewaters. Wells which dewater or demonstrate a slow recharge, may be sampled after fewer than three well volumes have been removed. Well purging information is recorded on the Purge Data sheet. All meters used to measure parameters are calibrated daily. Purge water is sealed, labeled, and stored on site in D.O.T.-approved 55-gallon drums. After being chemically profiled, the water is removed to an appropriate disposal facility by a licensed waste hauler.

Groundwater Sample Collection

Groundwater samples are collected immediately after purging or, if purging rate exceeds well recharge rate, when the well has recharged to at least 80% of its static water level. If recharge is extremely slow, the well is allowed to recharge for at least two hours, if practicable, or until sufficient volume has accumulated for sampling. The well is sampled within 24 hours of purging or repurged. Samples are collected using polyethylene bailers, either disposable or dedicated to the well. Samples being analyzed for compounds most sensitive to volatilization are collected first. Water samples are placed in appropriate laboratory-supplied containers, labeled, documented on a chain of custody form and placed on ice in a cooler for transport to a state-certified analytical laboratory. Analytical detection limits match or surpass standards required by relevant local or regional guidelines.

Quality Assurance Procedures

To prevent contamination of the samples, Clearwater personnel adhere to the following procedures in the field:

- A new, clean pair of latex gloves are put on prior to sampling each well.
- Wells are gauged, purged and groundwater samples are collected in the expected order of increasing degree of contamination based on historical analytical results.
- All purging equipment will be thoroughly decontaminated between each well, using the procedures previously described at the beginning of this section.
- During sample collection for volatile organic analysis, the amount of air passing through the sample is minimized. This helps prevent the air from stripping the volatiles from the water. Sample bottles are filled by slowly running the sample down the side of the bottle until there is a convex meniscus over the mouth of the bottle. The lid is carefully screwed onto the bottle such that no air bubbles are present within the bottle. If a bubble is present, the cap is removed and additional water is added to the sample container. After resealing the sample container, if bubbles still are present inside, the sample container is discarded and the procedure is repeated with a new container.

Laboratory and field handling procedures may be monitored, if required by the client or regulators, by including quality control (QC) samples for analysis with the groundwater samples. Examples of different types of QC samples are as follows:

- Trip blanks are prepared at the analytical laboratory by laboratory personnel to check field handling procedures. Trip blanks are transported to the project site in the same manner as the laboratory-supplied sample containers to be filled. They are not opened, and are returned to the laboratory with the samples collected. Trip blanks are analyzed for purgable organic compounds.
- Equipment blanks are prepared in the field to determine if decontamination of field sampling equipment has been effective. The sampling equipment used to collect the groundwater samples is rinsed with distilled water which is then decanted into laboratory-supplied containers. The equipment blanks are transported to the laboratory, and are analyzed for the same chemical constituents as the samples collected at the site.
- Duplicates are collected at the same time that the standard groundwater samples are being collected and are analyzed for the same compounds in order to check the reproducibility of laboratory data. They are typically only collected from one well per sampling event. The duplicate is assigned an identification number that will not associate it with the source well.

Generally, trip blanks and field blanks check field handling and transportation procedures. Duplicates check laboratory procedures. The configuration of QC samples is determined by Clearwater depending on site conditions and regulatory requirements.

CLEARWATER WELL GAUGING DATA/ PURGE CALCULATIONS AND WELL PURGING DATA

CLEARWATER WELL GAUGING/PURGING CALCULATIONS GROUP **DATA SHEET** 229 Tewksbury Avenue, Job No.: Date: Point Richmond, CA 94801 Tel: (510) 307-9943 Fax: (510) 232-2823 Drums on Site @ TOA/TOD Tech(s): Soil: Water: Soil: / Water:/ Diameter Well No. DTB DTW CV PV ST SPL **Notes** (in) (ft) (ft) (ft) (gal) (gal) (ft)

Explanation:

DTB = Depth to Bottom

DTW = Depth to Water

ST = Saturated Thickness (DTB-DTW) must be > 1 foot

CV = Casing Volume (ST x cf)

PV = Purge Volume (standard 3 x CV, well development 10 x CV)

SPL = Thickness of Separate Phase Liquid

Conversion Factors (cf)

2-inch diameter well cf = 0.16 gal/ft 4-inch diameter well cf = 0.65 gal/ft 6-inch diameter well cf = 1.44 gal.ft

				PU	KGE	DA	IAS	HEE	<u>'l'</u>			
	_	7	1	111 Ki.	2 RSIL	EJ	<u> </u>		. ,	,	Sheet	1 of 2
Job No.: /	4500	744Locat	ion: 🏒	TO L	E//	CA		Date	e: 7/4	6/06	Tech:	RONA
WELL#	TIMI	E POL.(g	12 (al.) 20 F	R D	D KK	DY L	NOR	F F	e ²⁺ Fe	l T		
mu	490	ft 3,00	000	616	139	4	18-0	501	20 00	& Samp	le for:	
Calc. purge	94	9 4.0	0	16	39	5	8	15	V Liet	TPHg		8260
volume	93	5:0	9	13	59,	4	Roll	, <u>x</u>		BTEX	МТВЕ	
<u> 48</u> 2						1	1011	7		Purgin	g Method:	
					. •							p/Disp. Baile
	COMM	IENTS: col	or, turbidi	ity, rechar	ge, sheen	, odor			L			
	_0/	EAR.	104)	, 90	D 1/2	solo	31/. A	Sac	STOR)		
- Artic	POSTI	DEPTH TO	WATER		2	74	(1)	SAMI	PLE TIM	E: 10	42	
итт и	TURKE	MOT (-/					18	
WELL#	TIME	VOL. (ga	l.) ORF) CND	TMP	DO	pН	Fe ²	Fe _T			
Mus	3 100	2.00) 05	4219	63,1		7.58	10.0	1101	7 Sample	for:	
Calc. purge	1170	4,00		1221	63,1		7-5	5		TPHg	TPHd	8260
olume	100/	6,50	,	223	63.		7.57			BTEX	MTBE	Metals
6,32										Purging	Method:	
										PVC Ba	iler/Pump/	Disp. Bailer
	COMME	ENTS: color	, turbidity	, recharge	e, sheen, o	odor						
	CLEAD	E,/ou), acc	3), No) She	ξN,	NO	ODDE	2			
	POST DI	EPTH TO W	/ATER:		1,59	,)		SAMPL	E TIME	105		
WELL#	TIME	VOL. (gal.)	ORP	CND	TMP	DO	рН	Fe ²⁺	Fe _r	7-0	· Capacita	
70 \	T	5 2 4	Ta. 24	T . J	1-71							
11W2	1429	2,00	057	32-8	9/2		6291	0.00	B.Ot	Sample fo	or:	
ilc. purge	(0))	4.80		327	0/2/		2.38			TPHg	TPHd	8260
lume	1003	6,00		325/	08.3		286			BTEX	MTBE	Metals
395										Purging M	lethod:	
										PVC Baile	r/Pump/Di	isp. Bailer
<u>C</u>	OMMEN	VTS: color, t	urbidity,	recharge,	sheen, od	or						
_(Clark	R, lon),90	DD 1	Vo a	JE41	N, No	3 0	ME			
Po	OST DEF	TH TO WA	TER:	/ '	>4			AMDLE	TIME	1100	g 2	

Clearwater Group Inc. - 229 Tewksbury Avenue, Point Richmond, California 94801 Phone: (510) 307-9943 Fax: (510) 232-2823

ž s				PUR			A SH	EET		
f.	DEMI.	,)	1	UKR	IVERS	JE I	R.	سنر	Act	Sheet Lof Z
Job No.: Fa	(ZLI)	Location:	HU	O DE	11,	<i>f</i>		Date:	461	Ob Tech: CONFY (
WELL#	TIME	VOL. (gal.)	ORP	CND	ТМР	DO	рН	Fe ²⁺	Fe _T	
Mer	102	2,000	054	269	62.8		JA	0,00	01	Sample for:
Calc. purge	1003	4.00		270	624		1.07			TPHg TPHd 8260
volume	1035	16.00		270	62,8	\$	7,00			BTEX MTBE Metals
529										Purging Method:
										PVC Bailer/Pump/Disp. Bailer
	COMM	ENTS: color,	turbidity,	, recharge	e, sheen,	odor				
	Cla	AR. 100	100	OD, 1	6551	455N	16	ODO	<u> </u>	
	POST D	EPTH TO W	ATER:	, .	1.7	2		SAMPL	E TIME	:_///
WELL#	TIME	VOL. (gal.)	ORP	CND	TMP	DO	pН	Fe ²⁺	Fe _T	7.7
										Sample for:
Calc. purge										TPHg TPHd 8260
volume										BTEX MTBE Metals
										Purging Method:
										PVC Bailer/Pump/Disp. Bailer
	COMMI	ENTS: color, t	urbidity,	recharge	, sheen, c	odor				
		·,								
	POST D	EPTH TO WA	ATER:	-,				SAMPLI	E TIME:	
WELL#	TIME	VOL. (gal.)	ORP	CND	TMP	DO	pН	Fe ²⁺	Fe _T	
										Sample for:
Calc. purge										ТРНд ТРН d 8260
olume										BTEX MTBE Metals
										Purging Method:
										PVC Bailer/Pump/Disp. Bailer
	СОММЕ	NTS: color, to	ırbidity, ı	recharge,	sheen, oo	dor				
	POST DE	EPTH TO WA	TER:				5	SAMPLE	TIME:	

Environmental Bio-Systems, Inc. - 707 View Point Road, Mill Valley, California 94941 Phone: (415) 381-5195

	1		I man D	1					
			ATER		WEL	L GAUC	ING/PU	RGING (CALCULATIONS
	-7	GROU	J P				DAT	A SHEET	-
		Tewksbury Richmond, (Date:	. 25:	Job No	.:	Locatio	n: // RIVERSIDE DE. DELL CA
			(510) 232-2823	6/6/0	6	HE	DO/H	12	Tell Co
	Tech(s):			Drums on	Site @ TC	DA/TOD		Total nu	mber of DRUMS used for this ever
	Ro	DNEY	BARY	Soil:)	Water:)	Soil:	Water:
	Well No.	Diameter (in)	DTB (ft)	DTW (ft)	ST (ft)	CV (gal)	PV (gal)	SPL (ft)	Notes
1	nw.4	み	12.86	3,21				 	
L	13		14.85	2.31					
_	10		14.85	3,22				-	
	UI	N .	12.80	2.23					
_			0	, ,					
		A	TRRU	JA			TEA	PRIVE	٤
			-1/	- Vil				,	
			150	1/31			150	PS1	
			50	751			50	P51	
						·			
						 ,-			
-									
_									
					····				

Explanation:

TB = Depth to Bottom

)TW = Depth to Water

:T = Saturated Thickness (DTB-DTW) must be > 1 foot

:V = Casing Volume (ST x cf)

V = Purge Volume (standard 3 x CV, well development 10 x CV)

PL = Thickness of Separate Phase Liquid

Conversion Factors (cf)

2-inch diameter well cf = 0.16 gal/ft 4-inch diameter well cf = 0.65 gal/ft 6-inch diameter well cf = 1.44 gal.ft

	•					
CLEAR	WATER	WE	LL GAU	GING/PUI DATA SH		LCULATIONS
GRO	UP	Date	Job No.	Location //	P6185 DR	
229 Tewksbury Ave, Poi Phone: (510)307-9943	4	378	AE001H	Kib.		PSIDS DR.
Tech(s):	Drums on Site	e @TOA		Drums on Si	te @ TOD	
Rowsy Ber	Pey soil	Water	0	Soil:	Wat	er: O
Well No Diameter (in)	DTB DTW (ft)	ST (ft)	CV (gal)	PV (gal)	SPL (ft)	Notes
MW42	12.86 2,84					
31	12/25/1/14					
10 1 V)	12.94 7.89	,0				
A	RICHA		\sum_{i}	PARTI	RE	
16	COPS, 50	DFS)	10	00PS)	5005	ז 1
		1		1		
					·	-,
				·		
	<u>.</u>					

Explanation:

DTB = Depth to Bottom

DTW = Depth to Water

ST = Saturated Thickness (DTB-DTW)

CV = Casing Volume (ST x cf)

PV = Purge Volume (standard 3 x CV, well development 10 x CV)

SPL = Thickness of Separate Phase Liquid

Conversion Factors (cf)
2-inch diameter well cf=0.16 gal/ft
4-inch diameter well cf=0.65 gal/ft
6-inch diameter well cf=1.44 gal/ft

				PU	RGI	EDA	TAS	HEE				
Job No.:7	440.) H_Locati	ion:	// X	1\1210 >E]]	251D) (A	E []	R ₁ Date	:5/5	3/06	Sheet Tech:	1 of (RODISY
WELL #		IE VOL. (ga		LP CN	ID TA) У (ИР D	O n		,	e _T		7(0.177)
MELL.		1	2 2	D #8		139	10070	19 O.1		/// Sample	e for	
Calc. purgo			- 12 6		700		* 1912	7		TPHg BTEX	TPHd MTBE	8260 Metals
orumo	_				3					Purging	Method.	o/Disp. Bailer
	COM	MENTS: colo	r, turbidi	ty, recha	rge, shee	n, odor						
				-					•			
	POST	DEPTH TO	WATER:					SAMP	LE TIM	Œ:		
WELL#	TIME	VOL. (gal.) ORP	CND	TMF	, DO	pН	Fe ²⁴	Fe _T			
200-	1		196.	4311	63.9	1340	17.9	50a	6.3	Sample fo	or:	
lc. purge				ļ			ļ			ТРНд	TPHd	8260
ume		1	<u> </u>	-	-	-					MTBE	Metals
				1	-	-	 			Purging M		·
	COMM	ENTS: color,	<u> </u> turbidity	recharge	e sheen	odor	<u> </u>	<u> </u>		PVCBane		Disp. Bailer
		21120.00101,										
•	POST D	EPTH TO W	ATER:					SAMPLI	E TIME	•		
ÆLL#	TIME	VOL. (gal.)	ORP	CND	ТМР	DO	pН	Fe ²⁺	Fe _T			
										Sample for:		
. purge						·						8260 Metals
										Purging Me PVC Bailer/		sn Bailer
L	COMME	NTS: color, to	orbidity, r	echarge,	sheen, o	dor			1			
_	······································								 .			
 p	OST DE	PTH TO WA	TED.				(SAMPLE	TIME	7.177.		

LABORATORY REPORT AND CHAIN-OF-CUSTODY FORM

Date: 7/10/2006

Matthew Ryder-Smith Clearwater Group, Inc. 229 Tewksbury Avenue Point Richmond, CA 94801

Subject: 4 Water Samples

Project Name: SEYMOUR RESIDENCE

Project Number: AE001H

Dear Mr. Ryder-Smith,

Chemical analysis of the samples referenced above has been completed. Summaries of the data are contained on the following pages. Sample(s) were received under documented chain-of-custody. US EPA protocols for sample storage and preservation were followed.

Kiff Analytical is certified by the State of California (# 2236). If you have any questions regarding procedures or results, please call me at 530-297-4800.

Sincerely,

Project Name: SEYMOUR RESIDENCE

Project Number: AE001H

Sample: MW-4

Matrix: Water

Lab Number: 50968-01

Report Number: 50968

Date: 7/10/2006

Sample Date :7/6/2006

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	7/8/2006	
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	7/8/2006	
4-Bromofluorobenzene (Surr)	106		% Recovery	EPA 8260B	7/8/2006	

Approved By:

Date: 7/10/2006

Project Name: SEYMOUR RESIDENCE

Project Number: AE001H

Sample: MW-3

Matrix: Water

Lab Number : 50968-02

Sample Date :7/6/2006

Campio Bate ://6/2000	Measured	Method Reporting		Analysis	Date	
Parameter	Value	Limit	Units	Method	Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	7/8/2006	
Toluene - d8 (Surr)	100		% Recovery	EPA 8260B	7/8/2006	
4-Bromofluorobenzene (Surr)	104		% Recovery	EPA 8260B	7/8/2006	

Approved By:

Joel Kiff

Date: 7/10/2006

Project Name : SEYMOUR RESIDENCE

Project Number: AE001H

Sample: MW-2

Matrix : Water

Lab Number : 50968-03

Sample Date :7/6/2006

Parameter	Measured Value	Method Reporting Limit	Units	Analysis Method	Date Analyzed	
Benzene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	7/8/2006	
Toluene - d8 (Surr)	94.2		% Recovery	EPA 8260B	7/8/2006	
4-Bromofluorobenzene (Surr)	99.2		% Recovery	EPA 8260B	7/8/2006	

Approved By:

o∉l∤Kiff

Date: 7/10/2006

Project Name: SEYMOUR RESIDENCE

Project Number: AE001H

Sample: MW-1 Matrix: Water Lab Number: 50968-04

Sample Date :7/6/2006

Sample Date .//o/2006		Method			Date Analyzed	
Parameter	Measured Value	Reporting Limit	Units	Analysis Method		
Benzene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Ethylbenzene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Total Xylenes	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Diisopropyl ether (DIPE)	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Tert-Butanol	< 5.0	5.0	ug/L	EPA 8260B	7/8/2006	
TPH as Gasoline	< 50	50	ug/L	EPA 8260B	7/8/2006	
Toluene - d8 (Surr)	94.9		% Recovery	EPA 8260B	7/8/2006	
4-Bromofluorobenzene (Surr)	99.6		% Recovery	EPA 8260B	7/8/2006	

Approved By:

oel Kiff

Date: 7/10/2006

Date Analyzed

Analysis Method

Measured Reporting
Value Limit Units

Project Name: SEYMOUR RESIDENCE

QC Report: Method Blank Data

Project Number: AE001H

		Method				
Parameter	Measured Value	Reporting Limit	ng Units	Analysis Method	Date Analyzed	Parameter
Benzene	< 0.50	0.50	ng/L	EPA 8260B	7/8/2006	
Toluene	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Ethylbenzene	< 0.50	0.50	ng/L	EPA 8260B	7/8/2006	
Total Xylenes	< 0.50	0.50	ng/L	EPA 8260B	7/8/2006	
TPH as Gasoline	< 50	90	ng/L	EPA 8260B	7/8/2006	
Toluene - d8 (Surr)	100		%	EPA 8260B	7/8/2006	
4-Bromofluorobenzene (Surr)	105		%	EPA 8260B	7/8/2006	
Benzene	< 0.50	0.50	ng/L	EPA 8260B	7/8/2006	
Toluene	< 0.50	0.50	ng/L	EPA 8260B	7/8/2006	
Ethylbenzene	< 0.50	0.50	ng/L	EPA 8260B	7/8/2006	
Total Xylenes	< 0.50	0.50	ng/L	EPA 8260B	7/8/2006	
Methyl-t-butyl ether (MTBE)	< 0.50	0.50	ng/L	EPA 8260B	7/8/2006	
Diisopropyl ether (DIPE)	< 0.50	0.50	ng/L	EPA 8260B	7/8/2006	
Ethyl-t-butyl ether (ETBE)	< 0.50	0.50	ng/L	EPA 8260B	7/8/2006	
Tert-amyl methyl ether (TAME)	< 0.50	0.50	ug/L	EPA 8260B	7/8/2006	
Tert-Butanol	< 5.0	5.0	ng/L	EPA 8260B	7/8/2006	
TPH as Gasoline	< 50	50	ng/L	EPA 8260B	7/8/2006	
Toluene - d8 (Surr)	92.1		%	EPA 8260B	7/8/2006	
4-Bromofluorobenzene (Surr)	102		%	EPA 8260B	7/8/2006	

Approved By: Joeli Kiff

KIFF ANALYTICAL, LLC

Date: 7/10/2006

QC Report: Matrix Spike/ Matrix Spike Duplicate

Project Name: SEYMOUR RESIDENCE

Project Number: AE001H

Relative Percent Diff. Limit						
Ling Re	25	25	25	25	25	25
Spiked Sample F Percent F t Recov. [Limit	70-130	70-130	70-130	70-130	70-130	70-130
Relative Percen Diff.	0.541	1.44	96	2.56	1.86	0.726
Duplicate Spiked Sample Percent Recov.	104	104	103	96.1	8.76	113
Spiked Sample Percent Recov.	104	105	105	98.6	96.0	113
Date Analyzed I	2/8/06	90/8//	2/8/06	2/8/06	90/8//	90/8/2
Analysis Method	EPA 8260B	EPA 8260B	EPA 8260B	EPA 8260B	EPA 8260B	EPA 8260B
e Units	ug/L	ng/L	na/L	ug/L	ng/L	ng/L
Duplicate Spiked Sample Value	41.5	41.6	41.2	38.4	196	45.0
Spiked Sample Value	41.7	42.2	42.0	39.4	192	45.4
Spike Dup. Level	40.0	40.0	40.0	40.0	200	40.0
Spike Level	40.0	40.0	40.0	40.0	200	40.0
Sample Spike Value Level	<0.50	<0.50	<0.50	<0.50	<5.0	<0.50
Spiked Sample	50981-07 <0.50	50981-07	50981-05 <0.50	50981-05	50981-05	er 50981-05
Parameter	Benzene	Toluene	Benzene	Toluene	Tert-Butanol	Methyl-t-Butyl Ether 50981-05

Approved By: Joe Kiff

KIFF ANALYTICAL, LLC

QC Report : Laboratory Control Sample (LCS)

Report Number: 50968

Date: 7/10/2006

Project Name: SEYMOUR RESIDENCE

Project Number: AE001H

Parameter	Spike Level	Units	Analysis Method	Date Analyzed	LCS Percent Recov.	LCS Percent Recov. Limit
Benzene	40.0	ng/L	EPA 8260B	90/8//	98.4	70-130
Toluene	40.0	ng/L	EPA 8260B	90/8//	102	70-130
Benzene	40.0	ng/L	EPA 8260B	90/8//	99.1	70-130
Toluene	40.0	ng/L	EPA 8260B	2/8/06	95.9	70-130
Tert-Butanol	200	ng/L	EPA 8260B	90/8//	9.96	70-130
Methyl-t-Butyl Ether	40.0	ng/L	EPA 8260B	90/8//	107	70-130

Approved By: Joel Kiff

KIFF ANALYTICAL, LLC

J 10	st	TAT	12 hr		24 ⊑ esUds.	- 48 1 10 1 1 10 1		72 hr	MŽ.	0	20	50	704										Coolant Present
Page	sis Request																						reipt Therm. ID #
	Analysis						(EPA 60																Sample Receipt Time Them
	/ pu	-			(M2108					_													San
1	Chain-of-Custody Record and	lest					es (Eb																9 Only: Date
	3ecc	Red			1 (EPA 8 24.2 Drir					├										:			Use Only Date
8	dy ?	Anatysis Request			90928 A																		For Lab Use Only: Is Date 1 070706
50968	ustc	A L	(808	S8 A9	5 EDB-E	,1 & A	(1°5 DC)).vsoć	pee7									十					Initials Fo
99	of-C						49∃) se																
25	ain-	-			(80		828 Aq: Aq3) 88	·					$\stackrel{\sim}{\leftarrow}$	_					_	.si			င့် ဝ
	ပ်						(80928						3			_	_	\dashv	-	Remarks		Bill to:	Temp °C
Q							8Se0B)													1		184	8
SRG # / Lab No.		,	1qq 0.2 ¢) lav	S08 A¶	3 neq (85608	A9∃)	38TM										_				7.2
# (9				1 3	12	┧ ┋┞			ηiΑ							\dashv	\dashv	_	\dashv				53
SR	2			SAD!	B	Matrix			lios			_	_						コ		11		75
	J	1	4	78	CKD !	 			Wate	\preceq							\dashv	-	-				
	Ø Yes	7	K	iss.	\$ 100	ative																	ر ا ا
	X	17	30	缘	<u> </u>	Preservative			Mone			-	_			_					1		2 Z
	؞	Log Coder		13/2	*	17			HCI	ম				,	\dashv		\dashv	\dashv	-	ived by:	ived by:		wed by Laboratory:
	abort		18	學	The D	\prod														De la conse	Seived		
te 30	۳ ۳	Company	1 1/2	今島		j <u>ē</u> -			Glass Tedls	\dashv			-			\dashv	\dashv		-4		Recei		
2nd Street, Suil 5, CA 95616 530.297.4800 530.297.4802	California EDF Report?		型分		∄ ത "∕~	Container			Poly												J m		7/24
Stre 956 297	aiito	Sampling 5	(S)	黑	Sampler	Γ			m 04	70	L	7	1	\dashv		_	_		4	7	8		
5 5 5 5 E	7	170°			P V	1	-	O/CI		A ST	Q	3	ব		\dashv	\dashv	\dashv		┪	~~	3		570786
2795 Davit Lab: Fax:	F)	THE STATE OF THE S			3	Sampling			Time	\hat{Z}	0	7							2		18 m		Date 07
	JY,	幹			1/2	Sam			Date			4							T	~			
		3	17.0	P.O. #:	120				۵	2	2	7	4							Q			
	E.	\$ 15 m		<u>a</u>	2	5	ža	4	+	Le	2									N.X			1
V	\$\forall P	W.	Z	<u>F</u>	na	14	75	1	tion	ًا ِٰ	``\	0								M			\ \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
177		X	77	17	2	111	7,7	4	signs	37.	4	4	>							4			<u>.</u>
KIFF Analytical LLC	ZZ.	Addres 7	$\widetilde{\mathcal{M}}$			is a		1	Sample Designation			1							ţ	XX			
Analytical L	世		0,#	双	EM /	Add.	ZE	1	Sam										4 7 2	1	Ag de		d peu
X \$	Port of the Marion	Company C	figure #	Project	Project Name	Project Address	X	\$	-										Relincuished by	1/5	Relinquished by		realinguished by: Ostribution: White J. ab: Disk. Ordinales
	י ר	<u>د</u> ر	10 V	<u>a</u>	<u>a</u>	<u>a.</u>				,	\	<u> </u>	0						ď		æ		ž (į